

Part Number	LSUM 168R0L 0005F EA
Document Number	V00_20160307

Product specification

LSUM 168R0L 0005F EA

Product specification

■ Specification

1. Primary specification

Part number	Capacitance (F)	Resistance DC (mΩ)	Max. Current (A) ¹	Leakage Current (mA)
LSUM 168R0L 0005F EA 5.8		240	200	< 25

2. Power & Energy

Part number	Part number Usable Specific Power, P _d (W/kg)		Energy Density (Wh/kg)	Stored Energy (Wh)
LSUM 168R0L 0005F EA	2,100	4,500	3.5	22.7

3. Standard & Reliability

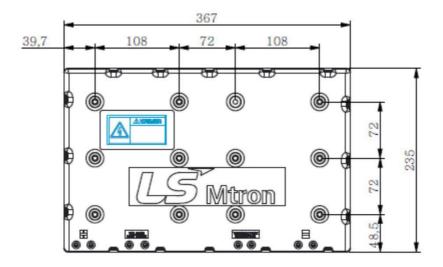
Rated Voltage	168 V					
Max. Voltage ²	180 V					
Maximum series Voltage		750 V				
Capacitance Tolerance		-0% / +20%				
Resistance Tolerance		< Spec. Value				
Operating temperature range		-40 ~ 65 °C				
Storage temperature range		-40 ~ 70 °C				
	After 1500 hours application of Rat	After 1500 hours application of Rated voltage. DC at 65°C, the capacitor shall meet the following limits.				
Endurance	Capacitance change	Within 20% of initially specified value				
	Internal resistance change	Within 100% of initially specified value				
Shelf life	4 Years stored uncharged state at +25°C					
	After 10 years at rated voltage and	+25 °C				
Life Time (25°C)	Capacitance change	Within 20% of initially specified value				
	Internal resistance change	Within 100% of initially specified value				
	After 1,000,000 cycles between rated voltage to half rated voltage at +25 °C					
Cycle Life (25°C)	Capacitance change	Within 20% of initially specified value				
	Internal resistance change	Within 100% of initially specified value				

4. Monitoring

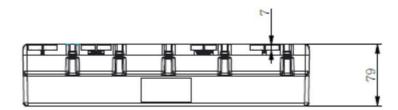
Part number	Temperature sensor	Temperature interface	Connector	Cell voltage monitoring	Balancing
LSUM 168R0L 0005F EA	NTC Thermistor	Analog	M5 Terminal type	Voltage center tap	Passive

^{*}Remarks
1) Current for 1sec discharge from the rated voltage to the half of it in constant current discharge, do not use as an operating current.
2) Non repeated, not to exceed 1sec.

Product specification


■ Safety & Physical Protection

Isolation voltage (DC)	Short circuit current(A)	Power Terminals	Recommended Torque - Terminal	Environmental Protection	Shock & vibration Protection
5.6kV	700	M5	4 Nm	IP 54	IEC60068-2-27,-29 IEC60068-2-6


Dimension in mm (not to scale)

■ Geometric properties

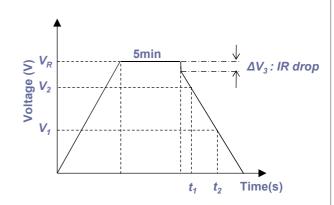
Part number		Moight (kg)		
	Length	Width	Height	Weight (kg)
LSUM 168R0L 0005F EA	367.0±1.0	235.0±1.0	79.0±1.0	Max. 6.5

Technical Information (1)

■ How to calculate specification value

1. The Measurement Methods

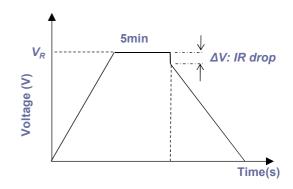
1-1 Capacitance


Apply rated voltage and charge for 5min after the constant current / constant voltage power supply has achieved the rated voltage. After a charge for 5min has finished, discharge with 10mA/F.

Measure the time t1 to t2 where the voltage between capacitor terminals at the time of discharge reduces from V1 to V2 as shown figure and calculate the capacitance value by the following formula:

- 2) Constant voltage charge at V_R for 5min
- 3) Constant current discharge with 10mA/F

$$C = \frac{I \times (t_2 - t_1)}{V_2 - V_1}$$



1-2 Resistance

The DC resistance of a capacitor shall be calculated by the following formula;

$$R_{DC} = \frac{\Delta V}{I_{DC}}$$

 R_{DC} is the DC internal resistance (Ω); Where ΔV is the drop voltage for 10ms (V); I_{DC} is the discharge current (A);

Technical Information (2)

1-3 Leakage current

The leakage current shall be measured using the direct voltage appropriate to the test temperature (25 $^{\circ}$ C) for 72hrs.

1-4 Maximum current

Current for 1sec discharge from the rated voltage to the half of it in constant current discharge,

$$I_{Max} = \frac{V_R - 0.5^* V_R}{\Delta t / C + R_{DC}}$$

Where I_{Max} is the Maximum current (A);

∆t is the discharge time (sec), 1 sec in this case ;

c is the capacitance (F);

 R_{DC} is the DC resistance (Ω);

 V_R is the rated voltage (V).

1-5 Maximum stored energy (E_{MAX})

$$E_{MAX}(Wh) = \frac{\frac{1}{2} CV_R^2}{3600}$$

2. The Standard Atmospheric Condition for Measurement

All test and measurements shall be made under standard atmospheric conditions for testing. Before the measurements are made, the capacitor shall be stored at the measuring temperature for a time sufficient to allow the entire capacitor to reach this temperature. The period as prescribed for recovery at the end of a test is a normally sufficient for this purpose.

Temperature : $15\sim35$ °C Relative humidity : $25\sim75\%$ Air Pressure : $86\sim106$ kPa

